Novel Route to Metallic Polythiazyl Bromides: Direct Bromination of S₄N₄

By Masud Akhtar, Chwan K. Chiang, † Alan J. Heeger, † and Alan G. MacDiarmid*

(Department of Chemistry and †Department of Physics, Laboratory for Research on the Structure of Matter, University of Pennsylvania, Philadelphia, Pennsylvania 19014)

Summary Metallic $(SNBr_{0.25})_x$ may be readily prepared directly from S_4N_4 by the action of bromine followed by heating of the $(SNBr_{0.4})_x$ which is first produced to 80 °C for 4 h.

At present there is extensive interest in the synthesis and properties of metallic covalent polymers. Since the discovery of the metallic properties of polymeric sulphur nitride, (SN)_x, in 1973 by Walatka, Labes, and Perlstein,¹ many attempts to modify its properties or substitute other groups in the chain-like structure of $(SN)_x$ have been made.² Recently the first metallic derivative of $(SN)_x$, polythiazyl bromide $(SNBr_{0.4})_x$, was reported independently by us as well as by Street et al.^{3,4}

The synthesis of $(SN)_x$, from which $(SNBr_y)_x$ is made, involves the preparation of S_2N_2 (which is an unstable compound at room temperature and difficult to handle) and its polymerization. We now report a new synthesis of the metallic material directly from the bromination of S_4N_4 .

In 1896 Clever and Muthmann described a material, $S_4N_4Br_4$, obtained by the bromination of S_4N_4 in CS_2 solution.⁵ They also described a garnet red material, $S_4N_4Br_6$, obtained by reaction of bromine vapour with solid S_4N_4 . Because of its insolubility in organic solvents and its deep bronze colour, Goehring considered that $S_4N_4Br_4$ was a linear polymer $[-S(Br)=N-]_x$.⁶ Heal later reinvestigated the reaction of bromine with S_4N_4 in CS_2 solution and concluded that the bronze coloured material could be S₃N₂Br₂.7

We allowed 180 Torr of Br₂ vapour to react with powdered S_4N_4 . Within 1 min the original orange colour of S_4N_4 changed to black to give a sticky material. Then, after some time, the original mass of $\mathrm{S}_4\mathrm{N}_4$ increased by swelling to give a free-flowing black powder. When weighed under

180 Torr of bromine vapour, the bromine content was as high as $(SNBr_{1.5})_x$ after 16 h. When the $(SNBr_{1.5})_x$ was pumped at room temperature for 4 h, a black powder of composition $(SNBr_{0.4})_{x}$ was obtained. The conductivity of compressed pellets of this material was ca. $3.5 imes 10^2 \Omega^{-1}$ cm^{-1} at room temperature. When $(\mathsf{SNBr}_{0\cdot 4})_x$ was heated with pumping at ca. 80 °C for 4 h, free bromine was liberated together with traces of S_4N_4 and a brown-black material. The residue had the composition $(SNBr_{0.25})_x$ and could readily be pressed into dark copper-coloured pellets.

X-Ray powder patterns of this material are almost identical with that of the copper-coloured crystals of $(SNBr_{0.25})_x$ obtained by heating $(SNBr_{0,4})_{x}^{3,8}$ obtained from $(SN)_{x}$ and Br.

The conductivity of compressed pellets of $(SNBr_{0.25})_x$ at 25 °C is ca. $1 \times 10^2 \Omega^{-1} \text{ cm}^{-1}$. This is in general agreement with what would be expected for a polycrystalline compaction based on the single-crystal data obtained from copper coloured $(SNBr_{0.25})_z$ in directions parallel (ca. $2 \times 10^4 \,\Omega^{-1} \,\mathrm{cm^{-1}})$ and perpendicular (ca. $1 \times 10^1 \,\Omega^{-1} \,\mathrm{cm^{-1}})$ to the SN chain.³ The conductivity is essentially temperature independent between room temperature and 4.2 K implying that the band gap is zero and that like the coppercoloured crystals of $({\rm SNBr}_{0\cdot 25})_x^{\ 3}$ prepared from $({\rm SN})_x$ and Br₂, the material has metallic properties. It is interesting to note that the reaction reported in this communication involves the polymerization of the cradle-like cyclic S_4N_4 to SN chains in the product. This should provide a simple route for making other metallic derivatives of (SN).

This work was supported by the National Science Foundation.

(Received, 20th June 1977; Com. 599.)

 \ddagger Street, et al. (J.C.S. Chem. Comm., 1977, 464) have independently reported the preparation of $(SNBr_{0.4})_x$ by bromination of S_4N_4 at 25 °C.

§ Satisfactory microanalytical data were obtained for this material.

¹ V. V. Walatka, Jr., M. M. Labes, and J. H. Perlstein, Phys. Rev. Letters, 1973, 31, 1139.

² See for example, C. Bernard, A. Herold, M. Lelaurain, and G. Robert, Compt. rend., 1976, 283C, 625.

³ M. Akhtar, J. Kleppinger, A. G. MacDiarmid, J. Milliken, M. J. Moran, C. K. Chiang, M. J. Cohen, A. J. Heeger, and D. L. Peebles, J.C.S. Chem. Comm., 1977, 473; Solid State Comm., 1977, 23, 607.
⁴ G. B. Street, W. D. Gill, R. H. Geiss, R. L. Greene, and J. J. Mayerle, J.C.S. Chem. Comm., 1977, 407; W. D. Gill, W. Bludau, R. H. Geiss, P. M. Grant, R. L. Greene, J. J. Mayerle, and G. B. Street, Phys. Rev. Letters, 1977, 38, 1305.
⁵ A. Clever and W. Muthmann, Ber., 1896, 29, 340.
⁶ M. Goehring, Quart. Rev., 1956, 10, 437; 'Ergebnisse und Probleme der Chemie der Schwefelstickstoffverbindungen,' Akademie-Varlag, Radin, 1977, 2027.

Verlag, Berlin, 1957, p. 68. ⁷ H. G. Heal, Adv. Inorg. Chem. Radiochem., 1972, 15, 375.

⁸ M. Akhtar, C. K. Chiang, A. J. Heeger, J. Milliken, and A. G. MacDiarmid, J. Amer. Chem. Soc., submitted for publication.